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Evanescent-Mode Coupling of Dual-Mode
Rectangular Waveguide Filters

Hsin-Chin Chang and Kawthar A. Zaki, Fellow, IEEE

Abstract —A novel coupling method for dual-mode rectangular
wavegiide filters is presented and analyzed. Unequal coupling
between dual-mode pairs of rectangular cavities is achieved
without the need of an iris. This method replaces the iris
completely while offering a practical, flexible, and wide range of
couplings. Mode matching method is used in the analysis and
its accuracy is verified by experiments. A four-pole dual-mode
elliptic function filter using this new coupling method is built
and tcsﬁed. Results show excellent agreement with the analysis.

I. INTRODUCTION

ONVENTIONAL dual-mode waveguide filters re-
Cquire cross slot irises to provide coupling between
modes in adjacent resonators [1]-[3]. The major drawback
of this coupling method is that the dimensions of the slot
are determined by a small-aperture approximation [7] that
does not provide the required accuracy for this type of
application. This means repeated experimental tuning
(machining) is needed, which makes irises expensive and
creates an engineering bottleneck. Efforts have been made
to design a waveguide filter without irises or with a
reduced number of irises [4]-[6]. One promising method
[6] is to replace the iris with a short waveguide of smaller
cross section. The advantage of this method is that an
accurate calculation of the coupling coefficient can be
made, and the resulting dimensions are reasonable.

The previous work [6] was done in a cylindrical wave-
guide filter. The coupling waveguide is circular in cross
section and hence gives equal coupling for the dual modes.
Except for the canonical form [4], unequal coupling is
generally required between adjacent cavities. Therefore,
additional coupling screws must be added and a tuning
procedure must be performed. Furthermore, the amount
of coupling increase achievable by the additional tuning
screw is limited. Thus a large ratio of coupling between
the two orthogonal dual modes cannot be realized.

This paper introduces a configuration which overcomes
the above problems. Consider the four-pole dual-mode
elliptic function filter shown in Fig. 1, where the arrows
denote electric field polarization of the four resonant
modes, and the M,;’s are the couplings between them.
Note that M, # M,;. To realize couplings M, and My,
the coupling structure should be asymmetric to 90° rota-
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Fig. 1. A symbolic description of a four-pole elliptic function filter.
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Fig. 2. One possible configuration for realizing the filter in Fig. 1.

tion. One possible configuration is to use two rectangular
cavities connected by a smaller rectangular waveguide.
This is shown in Fig. 2. The addition of coupling screws
for M, and M,,, frequency fine-tuning screws, and in-
put /output connections provides the complete waveguide
filter. Since the mode matching analysis provides precise
results of the resonant frequencies of the two dual or-
thogonal modes, as well as the coupling between the
modes, it is possible to design single- or dual-mode filters
in this configuration which require no tuning screws. This
is particularly attractive at higher microwave and millime-
ter-wave frequencies, where the additional losses and
tuning sensitivity may not be tolerated. This structure is
analyzed by the mode matching method. The results is
verified by measurements. An experimental four-pole
dual-mode elliptic function filter is designed, built, and
tested. Measured results show excellent agreement with
analysis.
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(a) The conventional (Jeft) and the new (right) coupling method.
(b) the configuration under analysis.
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Fig. 4. Two equivalent circuits of the coupling structure.

II. ANALYSIS

The new coupling method introduces a short coupling
waveguide of smaller cross section that replaces the cross
iris. The comparison is shown in Fig. 3(a). The small
coupling waveguide between the two dual-mode rectangu-
lar cavities is beyond cutoff over the desired band of the
filter such that only evanescent modes can exist. There
are three parameters (i.e., the height, width, and length of
the coupling waveguide) that can be varied to achieve the
two prescribed couplings (i.e., M, and M,;). Therefore,
the choice of dimensions is very flexible. These dimen-
sions can be adjusted to meet geometric specifications.
For the purpose of the analysis, the dual orthogonal mode
pairs in each of the two cavities are assumed to be
uncoupled (i.e., no 45° coupling screws are present). With
this assumption, only the modes of similar polarization in
each cavity are coupled, and thus can be analyzed sepa-
rately. Two equivalent circuits of the coupling structure
for one mode in each cavity are shown in Fig. 4, where M
is the mutual inductance. There are two resonant fre-
quencies for these circuits, namely f, and f,,. They can
be derived from the symmetry of the structure by placing
a perfect electric conductor (PEC) or a perfect magnetic
conductor (PMC) on the symmetry plane respectively.
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The coupling coefficient is shown to be given by
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By placing a PEC or a PMC in the midway plane of the
coupling waveguide, only half the structure, shown in Fig.
3(b), together with the coordinates and definition of geo-
metric parameters, needs to be analyzed. The plane z =
— ¢ can be either a PEC or a PMC. The mode matching
method can be used to analyze the structure in Fig. 3(b),
i.e., to calculate f, (with PEC at the center) and f,, (with
PMC at the center). Then (1) is used to obtain the
coupling coefficient, k. The half-sections in Fig. 3(b) are
divided into two regions:

Region I. z > 0, the cavity.
Region II: z <0, the coupling waveguide.

Within each region, both TE modes and TM modes
(transverse to the z direction) are used to match the
boundary at z = 0. The H, fields for the TE modes are,
for region I,

o mar N l, nw L,
z 5 . el N + =
' = [ COS L X+ = | cos L v+
sinh 'y;m(lz B Z)
) : T (2)
sinh y,,,./,
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The E, fields for the TM modes are, for region I,
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Notice that for TE modes, m or n can be zero, while for
TM modes both m and n must be positive. The trans-
verse fields can be derived from the axial field compo-
nents through Maxwell’s equations. In all the equations
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above i = jou and é = jwe, u and € being the perme-
ability and permittivity of the medium within the struc-
ture.

On the plane z =0, the boundary condition requires
both the transverse electric fields (E, and E,) and the
transverse magnetic fields (H, and .Hy) to be continuous,
ie.,

Y Ah,Ep =Y BLEYS (6)
m,n,p 75,9

Y Ab.Hp= YL BIH) (7)
m,n,p t,1.49

where the superscripts p and g stand for the TE mode or
the TM mode. The 4’s and B’s are the mode coefflclents
in regions I and II respectively. The E’s and H’s are the
vector transverse fields at z = 0.

Define the cross product of two modes as

(E*x H°) = f

cross section

E”Hy” - E;‘Hx”) d4. (8)
From the orthogonahty of eigenmodes, it is known that if
both the E and H fields in (8) are in the same region, all
the products vanish unless # and v are the same mode.
Taking the cross product of the H field of some mode in
region I on both sides of (6) and the cross product of the
E field of some mode in region II on both sides of (7) and
using the orthogonality relation (8), the following equa-
tions are obtained:

p(ER X H2Y= ¥ BIEN X HZ) (9)

iJ,q

“’IIquIp> Bq<EIIquIIq>

Y ALKE

m,n,p

(10)

Substituting the 4%, from (9) into (10) gives

il 27104
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m,n,p
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=ZBS'Z ¢

i,),q m,n,p

(11)
or, in matrix form,
(Elax HEYEM x H%)

(E» x Hr)

L

m,n,p

_<E:I/§q Hq>8 5 /6 '

i'YjrYqq (B ) O (12)
where unprimed indices i, j, and ¢ are for the columns
and the primed ones are for the rows. The 8’s are the
Kronecker delta function. The (B{j-) is a column vector

" respectively, and the m and n in (4) take N/M
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composed of all the mode coefficients in region II. The
rank of the square matrix is the total number of modes
taken (the sum of the number of TE and TM modes) in
region II. In order to be able to handle it numerically, the
infinite matrix in (12) has to be truncated. For example, if
the m and n in (2) take N/;F and NP different values,
and N{M
valucs then the summation in (12) would be over Ny TE

NEE + NM >< N{M terms. And if the i and j in (3) take

I}Yf and N , different values, respectively, and the i and
jin (5) take NIIx and N values, then the rank of the
matrix would be Ngf X Nye + Nyt X Nt

Equation (12) is a homogeneous linear system of equa-
tions. In order to have a nonzero solution for the coeffi-
cients, the determinant of the matrix in (12) must be zero.
The frequencies that satisfy this condition are the reso-
nant frequencies. Both cases for a PEC and a PMC wall
at the symmetry plane are calculated. They are used to
obtain the coupling coefficients from (1). We can substi-
tute the frequency back into (12) to solve for the coeffi-
cients, and then the field distribution inside the cavity is
obtained.

1. REsULTS

A program has been developed for the calculation of
the coupling coefficient and field distributions. The total
fields existing in the resonator at resonance are a combi-
nation of TE and TM modes. Therefore, these fields

- cannot strictly be designated as pure TE or TM modes

and are designated as hybrid (HE) modes. However, for
calculating the coupling between the two cavities using
the small-aperture approximation, the TEy, mode is as-
sumed to be the only mode existing in the cavities. The
approximate coupling is computed from [7], [8]

2
A M 10—8.19/)%,/1—(,\5/;\)2
2

(13)

where A is the free-space wavelength and A, is the cutoff
wavelength inside the coupling waveguide. M is the mag-
netic polarizability of the aperture. Figs. 5 and 6 show the
variation of the coupling coefficient between two cavities
as a function of half the coupling section length (¢). In
addition to the measured and computed results using the
mode matching method, the figures also show the approx-
imated small-aperture coupling coefficient. Conventional
coupling measurement methods carry measurement error,
inherent in these methods and hardware limitations. We
have essentially eliminated these errors by using the re-
flection coefficient phase measurement method [10}. In
this method the frequencies of the zeros and poles of the
one-port network (i.e., the 180° and 0° phases of the
reflection coefficient) are accurately measured. The cou-
pling coefficient is determined only from frequency mea-
surements. Since a synthesizer is used as the source,
frequency measurement errors are essentially eliminated,
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Fig. 5. Comparison of measured coupling coefficient with calculated

k x 10 °

Fig. 6. Comparison of measured coupling coefficient with calculated
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Fig. 9. Convergence behavior of resonant frequencies and coupling
coefficient with number of modes used.

thus vielding very accurate coupling measurement. The
calculated results using mode matching agree extremely
well with the measured results, with an error of less than
1.0%. Figs. 7 and 8 show the variation of the coupling \ ]
with the height and width (¢ and b) of the couphng -4 -2 0

section respectively. y=0

It can be:secen that the coupling between the two modes Fig. 10. Matching of H, ficld at the béundary =0,
behaves differently with the height and width of the \
coupling waveguide. In all the figures above, [, is fixed.
These figures show that the proposed coupling method
can realize couplings of very wide range and ratio.

The convergences of resonant frequencies and coupling
coefficients with the number of modes used in the mode
matching are shown in Fig. 9. Assuming /,=1[, =1/, =1
in.,, g=5b=.0.5 in,, and ¢ = 0.1 in., the numbers of modes
in regions 1 and 2 are chosen to be Ni™F = N F = N/M
NfM=2n and Njy=Nj5=N;y= Nny = n, respec—
tively. Fig. 9 shows that at least n=4 is needed to
be within 0.1%. In general, the number of modes used in
the two regions should be proportional to their sizes [9].
For example, if [, /a=2 and 1 /b=1 then (N{E +

IM) /(NJE + foM) =2 and (N o /(N +
NHM) 1.

The H, and E, fields on the boundary as obtained
from both regions I and II are shown in Fig. 10 and Fig.
11 respectively. These fields indicate how well the bound-
ary conditions are satisfied.

Finally, a dual-mode four-pole elliptic function filter
has been designed, built, and tuned. The normalized
coupling matrix and 1/0 impedance are given in (14).
The filter is designed to have a center frequency of 7.83
GHz and a bandwidth of 160 MHz. The dimensions of the
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cavities and coupling section were determined from the

mode matching analysis to be /, = 0.993 in., /, =1.005 in,, . Lol
I,=1.05 in., a=0.528 in., b=0.418 in., and ¢=0.15 in. —4 -2 0 2 * yeaxis
The ‘input and output ports were realized by coaxial x=0

‘probes. The measured responses of the experimental fil- Fig. 11. Matching of E, field at the boundary z = 0.
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Fig. 12. Measured response for the experimental filter: $1; and S,;.

ter is shown in Fig, 12;

0 0.81418 0 —0.30145
0.81418 0 0.81108 0 _

0 0.81108 0 0.81418 |F=10048.
—0.30145 0 081418 0

(14)

IV. Concrusions

A mnovel coupling method for dual-mode rectangular
waveguide filters has been introduced. Mode matching
method has been used to analyze the structure and has
proved to be extremely accurate, as verified by experi-
ments. Extensive results have been presented to explore
the nature of this new coupling method. An experimental
dual-mode four-pole elliptic function filter using this new
coupling method has been built and its measured perfor-
mance shows excellent results. This new coupling method
has a wide range of practical and potential applications,
particularly for high microwave and millimeter-wave fre-
quencies, where tuning screws can be completely elimi-
nated.
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